
Insertion Tree Phasers:
Efficient and Scalable Barrier Synchronization for Fine-grained Parallelism

Stefan Marr1, Stijn Verhaegen, Bruno De Fraine, Theo D’Hondt, and Wolfgang De Meuter
Software Languages Lab, Vrije Universiteit Brussel

Brussels, Belgium
Email: {stefan.marr, stverhae, bdefrain, tjdhondt, wdmeuter}@vub.ac.be

Abstract—This paper presents an algorithm and a data
structure for scalable dynamic synchronization in fine-grained
parallelism. The algorithm supports the full generality of
phasers with dynamic, two-phase, and point-to-point synchro-
nization. It retains the scalability of classical tree barriers, but
provides unbounded dynamicity by employing a tailor-made
insertion tree data structure.

It is the first completely documented implementation strat-
egy for a scalable phaser synchronization construct. Our
evaluation shows that it can be used as a drop-in replacement
for classic barriers without harming performance, despite its
additional complexity and potential for performance optimiza-
tions. Furthermore, our approach overcomes performance and
scalability limitations which have been present in other phaser
proposals.

Keywords-Fine-grained parallelism; barriers; phasers; syn-
chronization; many-core; data structures; trees; algorithms

I. INTRODUCTION

With the rise of many-core architectures and the prospect
of exa-scale computing, fine-grained parallelism becomes
relevant for a wide range of problems and will be necessary
to fully utilize the available computational capacities [1]. In
conjunction with this hardware development, new constructs
have been proposed to enable the synchronization of fine-
grained parallelism. Most notable are X10’s clocks [2] and
Habanero’s phasers [3].

Clocks, as well as phasers, are constructs for barrier
synchronization, i. e., to synchronize activities. In addition
to the notion of a classic barrier, clocks support adding and
dropping participants dynamically. Phasers extend clocks
through a mechanism that enables point-to-point synchro-
nization. This allows for the expression of dependencies
between activities on a more fine-grained level in order to
reduce the typical over-synchronization of barriers. From
our perspective, phasers are currently the most sophisticated
barrier synchronization construct proposed in the literature.

The literature regarding implementation strategies for
barrier synchronization discusses different implementation
aspects and optimizations [4]–[7]. Notably absent is the
discussion of dynamic barriers, i. e., barriers with support
for changing groups of participants. This changed only with
the introduction of clocks and phasers.

With the proposal of hierarchical phasers, a scalable
implementation of barrier synchronization with the full gen-
erality of phasers was introduced [8]. However, the proposed
approach has limitations.

In this paper, we propose an implementation strategy that
is derived from traditional tournament barrier implementa-
tions to overcome those limitations. This paper’s contribu-
tions are as follows:

• an implementation strategy which combines the scala-
bility of traditional tree barriers with phaser semantics

• the insertion tree structure with the necessary stability
for synchronization of dynamic groups of participants

• the first complete documentation of an implementation
strategy for scalable phasers2

• an evaluation of the scalability and its use as a drop-in
replacement for traditional barriers

II. BARRIER SYNCHRONIZATION CONSTRUCTS

Barriers are constructs used to synchronize concurrently
executing activities. A barrier is a synchronization point
which all activities have to reach before any of them can
progress further. Depending on the language or library used,
a barrier can be restricted to a subset of the activities in the
systems. We refer to activities that participate in a barrier as
participants.

Barriers are often used in the field of scientific computing
and allow for the construction of algorithms that operate on
shared data in a step-wise manner. This approach ensures
data-integrity and avoids data-races by construction.

However, barriers usually imply over-synchronization,
which restricts the realized parallelism more than is neces-
sary. To overcome this over-synchronization, barriers have
been extended by two main concepts. The first is the notion
of fuzzy or two-phase barriers [4], [5] and the second is
point-to-point synchronization.

The goal of fuzzy/two-phase barriers is to reduce the un-
necessary stalling of activities. To this end, barrier synchro-
nization is split into two steps. The first step is completed
with a checkpoint. It is reached when all data-dependencies

1Supported by a doctoral scholarship of IWT-Vlaanderen, Belgium.
2All source code is available at http://barriers.googlecode.com/

for the adjacent phase have been satisfied. Thus, the data
which is required by other activities has been generated. At
the checkpoint, the participant announces synchronization,
but remains in the same phase and continues with other
useful computations without waiting. After all work has
been done for that phase, the second step is completed
and the participant reaches the decision point to await
the synchronization of the barrier. If all participants have
already reached the checkpoint, a participant does not need
to block at a decision point. This allows the parts of
adjacent phases that do not have direct data dependencies
to overlap. Furthermore, as soon as all participants have
reached the checkpoint, the synchronization is propagated,
hiding the overhead of the barrier operation and making this
information immediately available at the decision point.

The point-to-point synchronization allows for the expres-
sion of producer-consumer relationships between partici-
pants of a barrier. This concept was first proposed by Shirako
et al. with phasers [3]. Phasers circumvent the problem of
over-synchronization by making data dependencies explicit.
For this purpose, activities can indicate a mode with which
they want to be registered on the phaser. To participate in
a phaser as a producer, an activity is registered in signal-
only mode. Thus, it will only announce synchronization
for a phase, but will never await global synchronization.
Consumers, on the other hand, can be registered in wait-only
mode. This implies that they will never actively announce
synchronization, but will await global synchronization, usu-
ally to ensure that their data dependencies are satisfied.

In addition, phasers introduce single statements. They are
used to specify code which is executed exactly once during a
phase transition. This is similar to OpenMP’s single-thread
execution regions and typical uses of the return value of
the POSIX Threads barrier. However, the single statement
allows an additional barrier synchronization to be omitted,
since it executes the code explicitly during a phase transition
and thus performs considerably better.

X10’s clocks [2] were designed as a barrier construct
to facilitate fine-grained fork/join parallelism. They support
fuzzy/two-phase barrier semantics, but more importantly
enable participants to join and leave a barrier dynamically.
Phasers also provide this functionality. Both constructs are
the first to enable barrier synchronization in the presence of
fully dynamic fork/join parallelism.

III. BARRIER IMPLEMENTATION STRATEGIES

This section will discuss implementation strategies for
barriers. We will give a brief overview of traditional barriers,
clocks, phasers, and the limitations of these strategies.

A. Traditional Barriers

Until recently, the literature on barrier implementation
strategies has disregarded dynamic groups of participants.

Thus, classic implementation strategies do not support
adding or dropping participants from a barrier.

The simplest barrier is a central barrier. It is implemented
using an atomically updated counter [7]. It can be adapted
to support dynamic participants, but unfortunately does
not scale well. The dissemination barrier scales better, but
requires barrier participants to be known upfront [9], which
prevents its use as a dynamic barrier.

Tree barriers like the tournament barrier are not prepared
to allow the adding and dropping of participants either.
However, the general concept behind the tournament barrier
is adaptable for our purpose, thus we will briefly describe
the algorithm of Hensgen et al. [9].

The idea is to view the process of determining global
synchronization as a tournament with log2(#participants)
rounds. Hensgen used an algorithm that initialized the barrier
data structures with predefined winners and losers for each
round. When a participant reaches the barrier, it starts in
the first round. If it is a loser in that round, it sets a flag
and then busy-waits on a global flag which indicates barrier
synchronization. The winner in that round busy-waits on the
flag set by the loser before it goes on to the next round.
The overall winner sets the global flag on which all other
participants busy-wait.

B. Clocks and Phasers

The implementation of clocks is based on a central
counter. Once all participants have reached the checkpoint,
the central phase counter is incremented. At the decision
point, the participant awaits the correct phase counter value.

Phasers are more complex. Their implementation is based
on a master activity which performs the synchronization.
The master can be either fixed or chosen at runtime. When
the master arrives at the barrier to achieve global synchro-
nization, it waits for all other participants to announce that
they have reached the next phase. A phaser maintains a
list of synchronization objects for the registered activities.
Each activity has a corresponding object which encapsulates,
among other information, a signal count. The master activity
iterates over a list with these signal counters and busy-waits
on each until the participant announces synchronization by
increasing the counter. Afterwards, the master can execute a
single statement and then announce global synchronization
by incrementing a global phase counter. The reason for
using a master activity seems to be the additional complexity
which is introduced by signal-only participants. Since they
can advance their own phase count independently, additional
precautions are necessary to achieve correct global synchro-
nization.

Hierarchical phasers have been proposed to provide better
scalability than the original phasers [8]. The basic idea
is to rely on a tree structure to achieve scalability. Every
tree node is a phaser. The structure of the tree is prede-
fined by the parameter tiers, which defines the maximal

number of levels of the tree, and the parameter degree,
which represents the arity of the tree. Problematic with
the proposal of Shirako and Sarkar is that they leave out
details necessary to replicate their implementation. From
our perspective, the exact strategy to build the tree and add
new participants is crucial for the performance properties of
their implementation. Depending on the chosen approach,
there are different possibilities for interacting with the tree
and modifying it, which have an impact on the scalability
and runtime overhead. The authors themselves acknowledge
that the need for atomic operations increases the registration
overhead, but do not detail their strategy. Sec. VI will discuss
this in more detail together with our evaluation results.

IV. IMPLEMENTING A DYNAMIC BARRIER
WITH AN INSERTION TREE

We will briefly describe the basic principles used for the
synchronization tree, including the overall invariants which
have to be satisfied to allow consistent synchronization, the
data structures, and the used algorithm.

A. Basic Principles of the Synchronization Tree

The barrier participants are the leaf nodes of the tree,
and all non-leaf nodes (helper nodes) are used to allow
synchronization in log2(#participants) steps.

We are using shedding card games as a metaphor. In
games like Rummy, cards must be discarded as fast as
possible and the game goes on until only one player is left,
which is the overall loser. Thus, for our synchronization tree,
a winning activity reaches a helper node first. Afterwards, it
can go on to do useful computations. The other activity for
that helper node loses and needs to crawl up the tree and
challenge another loser. The last activity reaching the root
is the overall loser and has to announce synchronization.

For the data of a helper node in the tree, a simple rule
applies: every value represents the aggregated values of its
corresponding subtree. From that rule follows property (1):
a set wait-only flag indicates that all participants in the
subtree are registered in wait-only mode and therefore do
not actively participate in synchronization. For the phase
counts it means that a helper node always has to indicate
the minimum phase count of all participants in its subtree.
We define this as property (2).

Fig. 1 shows an example of a synchronization tree. Two
participants already dropped from the barrier. One partic-
ipant is registered in signal-only mode and has already
advanced to phase 20. One participant is explicitly registered
in wait-only mode and the two remaining ones are registered
in the standard signal-and-wait mode. However, one of them
has already signaled synchronization in the current phase.
When the other does so too, it has to determine global
synchronization to allow all participants to proceed to the
next phase. The free list enables the reuse of free leaf
nodes in the synchronization tree. The list is needed to avoid

Phaser

phase: 3

3

wo

p: 4

resumed

sig/wait

p: 20

sig-only

p: 3

sig/wait

p: 3

wait-only

fr
e
e
 l
is

t

signal synchronization

h1

right

h1 h3

h2

h4

h5

h3

left

20

wo

4

wo

4 20

4 3

(dropped) (dropped)

- phase countn

- wait-only flagwo

Figure 1. An Insertion Tree Barrier with Four Participants

unnecessary growth of the tree while maintaining a stable
tree structure.

A general prerequisite for our approach is that an activity
can only be added to the barrier by an activity that already
participates in the barrier. Furthermore, the adding partici-
pant must not have announced synchronization, i. e., it can
not add a new participant to the barrier after reaching the
checkpoint. This guarantees that the barrier does not reach
global synchronization during an add operation.

B. Insertion Tree

The main problem we had to overcome was building a
tree structure that allows the addition of new nodes while
maintaining the invariants for synchronization.

Our solution to this problem is called an insertion tree.
It is an inverted tree, thus child nodes have a pointer to
their parent, but the parent does not know its child nodes.
This choice was primarily relevant during the design of the
algorithm. The strict inverted tree made several problems
obvious, but is not essential for the approach.

The tree itself does not support a real remove operation,
but relies on a free list to enable the reuse of dropped nodes.

In order to maintain the synchronization invariants and
allow activities to announce synchronization in parallel to
insert operations, we need to minimize the possible tree
modifications. We achieve that by using a node insertion
strategy which could be named complete smallest subtree
first. With this strategy we can insert a node knowing only
the last inserted node and the number of leaves in the tree.
Fig. 2 illustrates the insertion of nodes. The number of leaves
defines exactly where the next insert operation has to be
done (insertNode) to fill the smallest subtree first. The
algorithm is basically walking up the tree as long as the
number of nodes for a level indicates that the current subtree
is complete.3

The insert operation creates and initializes a helper node,
which becomes the parent of the new participant node. Then
it sets the parent pointer of the helper node to the parent
of insertNode, and the inserted participant points to the
helper node. The operation is completed by changing the
parent pointer of insertNode to the helper node.

3i = numLeaves; while (i mod 2 == 0) {insN = insN.parent; i /= 2;}

1 2 3 4 5

h1 h3

h2

h4

next
1 2 3 4

h1 h3

h2 next

1 2 3

h1

h2

next
1 2

h1
next

1
next

added node

changed pointer

next
next insert

Figure 2. Steps of a Growing Insertion Tree

C. Data Structure

Fig. 3 visualizes the used data structures. The main com-
ponents of the helper nodes are the parent pointer, an
identifier of the left child node and its synchronization state.
The leftChild identifier is used to determine from which
subtree a participant traversed up the tree. This is necessary
to be able to add nodes (cf. Sec. IV-D3). The synchronization
state, i. e., the phase counts and wait-only flags need to
be changeable atomically to avoid data races and read-
inconsistencies. Notice that is is important to take measures
to prevent problems that can be caused by phase count
overflows. The wait-only flags indicate whether a subtree’s
participants actively take part in the synchronization.

The participant node represents an activity taking part
in the barrier. The first field is the mode with which the
participant was registered on the barrier. The resumed
field indicates whether the participant already announced
synchronization. It is not relevant for participants in signal-
only mode. The pointer to the global phase count is used to
check for completion of a phase, i. e., synchronization.

The barrier maintains a count of the number of leaves,
a pointer to the last leaf for determining the insert node, a
pointer to the first free-list element of dropped participants,
and a global lock to sequentialize insert and drop operations.
Furthermore, it maintains the global phase count. It is used
to initialize new participants correctly, and to notify all
participants of global synchronization.

To allow drop operations from the barrier, we maintain a
free list. The elements of this free list store the parent of the
free place, a flag to remember whether it was the left child,
and a pointer to the next free-list element.

D. Algorithm

In this section, we will discuss the details of the synchro-
nization algorithm and the approaches to solve the problems
caused by adding and dropping nodes. The used pseudo-
code is inspired by Python and uses significant whitespace
for conciseness.

1) Announcing Synchronization: When a participant
reaches the checkpoint it needs to announce this. Lst. 1
provides the corresponding pseudo-code.

First the participant checks whether it already announced
synchronization or it is registered in wait-only mode. In
either case, it does not need to proceed.

parent :HelperNode
leftChild:addr
sync.waitOnlyL:bool
sync.waitOnlyR:bool
sync.phaseLeft :int
sync.phaseRight:int

HelperNode
mode :Mode
resumed :bool
phase :int
globalPhase:int*
barrier:Barrier
parent:HelperNode

Participant
numLeave :int
lastNode:Participant
phase :int
insertLock:Lock
firstFree :FreeNode

Barrier

next :FreeNode
parent :HelperNode
isLeft :bool

FreeNode

Figure 3. Used Data Structures

Otherwise, it has to remember it already announced syn-
chronization and can then start to propagate the announce-
ment to its parent node. Activities that only participate by
signaling disregard the resumed flag altogether, but also
increase their local phase counter.

A participant can only win at a helper node if the
opponent is not registered in wait-only mode. Furthermore,
the corresponding phase count in the helper node needs to be
smaller than the value the participant wants to announce to
be able to win. If the participant is too late and loses, it has
to walk up the tree and propagate synchronization further.

In the event that the participant reaches the top of the
tree as the last participant, it becomes the overall loser, and
needs to indicate global synchronization.

Before doing so, the single statement needs to be exe-
cuted. It is safe to do that here, since there is only one
participant that can reach this point. Thus, it is guaranteed
to be executed only once during a phase transition. Further-
more, all activities have already announced synchronization
and adding new participants to the barrier is not allowed at
this point in time.
def resume(p): # p is participant
if p.resumed or p.mode == WAIT_ONLY:
return false

p.resumed = p.mode != SIGNAL_ONLY # resume flag
p.phase++ # increment local phase
n = p.parent
prev = p
propagate = true

while n and propagate:
atomic:
if n.leftChild == prev:

propagate = n.flags.waitOnlyR or
(n.flags.phaseRight >= p.phase)

n.flags.phaseLeft = p.phase
else:

propagate = n.flags.waitOnlyL or
(n.flags.phaseLeft >= p.phase)

n.flags.phaseRight = p.phase
prev = n
n = n.parent

if propagate: # overall loser notifies all
p.barrier.executeSingleStmt()
p.globalPhase++

return propagate

Listing 1. Announcing Synchronization

2) Dropping Participants: Notice that a dropped partic-
ipant is equal in its semantics to a participant which is
registered in wait-only mode and hence the tree does not
need to be changed. For participants in other modes, we
need to announce synchronization and propagate the wait-

only mode (cf Lst. 2). Announcing synchronization works
the same as in the general case. If both subtrees are marked
wait-only, this information has to be announced to the parent
node to mark the whole subtree as wait-only. After dropping
a participant, an item is added to the free list which describes
the free spot in the tree.
def announceDrop(p):
p.phase++ # increase local phase count
propagateResume = propagateWaitOnly = true
n = p.parent
prev = p

while n and (propagateWaitOnly or propagateResume):
atomic:

if propagateResume:
if n.leftChild == prev:

propagateResume = (n.flags.waitOnlyR
or (n.flags.phaseRight >= p.phase))

n.flags.phaseLeft = p.phase
else:

propagateResume = (n.flags.waitOnlyL
or (n.flags.phaseLeft >= p.phase))

n.flags.phaseRight = p.phase
if propagateWaitOnly:

if n.leftChild == prev:
n.flags.waitOnlyL = true

else:
n.flags.waitOnlyR = true

propagateWaitOnly =
(n.flags.waitOnlyL and n.flags.waitOnlyR)

prev = n
n = n.parent

if propagateResume: # overall loser notifies all
p.barrier.executeSingleStmt()
p.globalPhase++

return propagateResumeFurther

Listing 2. Announcing Dropped Participant

3) Adding Participants: New participants can join the
barrier either by reusing an unoccupied leaf or adding a
new leaf to the tree.

If a new node is added to the tree, additional care has
to be taken with the phase counts to ensure property (2).
Lst. 3 contains the code for adding a new node. First, the
newly created helper node is initialized properly, then the
insertNode will become the left subtree for the new
helper node. The participant itself will be the right subtree
(cf. Sec IV-B). The correct wait-only flags for the helper
node depend on the mode of the participant and of the
insertNode subtree.
def insertNewIntoTree(insertNode, p):
insertParent = insertNode.parent
helper = new HelperNode
helper.parent = insertParent
helper.leftChild = insertNode
helper.initWaitOnly(insertNode, p)
helper.setPhases(p.phase)

insertNode.parent = helper # modify tree

move phase count
atomic:
diff = insertParent.flags.phaseRight - p.phase
insertParent.flags.phaseRight = p.phase
insertParent.flags.waitOnlyR &&= p.mode

atomic:
if helper.flags.phaseLeft == phase:

helper.flags.phaseLeft = phase + diff
p.parent = helper

Listing 3. Added New Participant Node

By initializing the helper node with the current minimum
phase count, i. e., the global phase count, it is guaranteed
that the left subtree will win at the helper node and will not
traverse up the tree to announce synchronization.

After modifying the tree, the old phase count of
insertParent, the old parent of insertNode, needs to
be preserved since it represents the synchronization of that
subtree. Thus, in an atomic operation, the difference to the
global phase count has to be determined and phaseRight
has to be set to the minimum phase count of the subtree,
which is equal to the global phase count. Furthermore, the
wait-only flag should be set correctly.

In a second atomic operation, the difference is added to
the helper node’s phaseLeft counter. However, it is only
to be set if the value is still equal to the global phase count,
otherwise signals from that subtree could get lost.

After completing the insertion into the tree, the overall
consistency properties (1) and (2) need to be restored.

If a participant is added in place of one which was
dropped before and the new participant is registered in wait-
only mode, no action has to be performed. If the participant
is added as a new node but uses the wait-only mode, the
wait-only mode needs to be propagated identical to dropping
a node. For all other cases, the code in Lst. 4 gives an
overview of the necessary actions.
def announceAdd(node, phase):
n = node.parent
prev = node
expectedP = None
while n:
ensure racing subtree was here
while expectedP:
if ((n.leftChild == prev and

n.flags.phaseLeft == expectedP)
or (n.leftChild != prev and
n.flags.phaseRight == expectedP)):
expectedP = None

atomic(n.flags):
if n.leftChild == prev:

n.flags.phaseLeft = phase
expectedP = n.flags.phaseRight

else:
n.flags.phaseRight = phase
expectedP = n.flags.phaseRight

if n.leftChild == prev:
n.flags.waitOnlyL = false

else:
n.flags.waitOnlyR = false

prev = n
n = n.parent

Listing 4. Announcing Added Participant

When a dropped node has been replaced, the function
announceAdd is called with this participant node and the
global phase count. If the participant was added as a new
node, the function is called with insertParent instead
of the participant node.

While propagating the minimum phase count, there is one
critical data race. If synchronization is already complete for
the subtree before we as p1 add the node, it is possible
that another participant p2 loses at a node n1 to which

synchronization was propagated. Now, it can happen that
we (p1) reach that particular node n1, reset the phase count,
proceed up the tree to n2 and reset it too. A third participant
p3 could then win at the reset node n2 before the p2 reaches
it. This would mean that p2 would propagate a wrong phase
count, possibly even announcing global synchronization. To
avoid that, we need to wait for p2, i. e., until the expected
phase count is set on the node we are going to reset.

Lastly, the wait-only flags along the tree have to be set
correctly together with the phase count.

V. PERFORMANCE EVALUATION

The objective of our performance evaluation is threefold.
First, we evaluate the scalability and whether the two-
phase support hides the barrier overhead in typical load
imbalances. Second, we verify that the insertion tree phaser
can compete with standard barrier implementations in terms
of its barrier overhead to allow it to be used as a drop-in
replacement for existing applications. Third, we evaluate the
performance of dynamic task creation.

The literature convincingly shows the benefits of the
advanced barrier and phaser concepts [3]–[6], [8], [10].
Thus, we will primarily focus on the actual synchronization
overhead.

A. Experimental Environment and Methodology

We run our experiments mainly on a Tilera TILEx-
pressPro64 using the Tilera MDE 2.1.0 Linux software
stack.4 The TilePro64 CPU has 64 cores clocked at 700MHz.
We use the standard configuration for our benchmarks. In
this setting only 59 cores are available for user programs.
Since the caches on each core are rather small compared
to typical desktop CPUs, the manual recommends -Os as
the standard optimization setting, which we use together
with deactivated assertions (-DNDEBUG). All experiments
are also executed on an Intel machine with two Intel Xeon
E5520 CPUs at 2.27GHz with hyper-threading enabled.
However, the results do not show significant differences
between the barrier algorithms and thus are left out.

As barrier implementations, we use a classic central spin-
ning barrier [7], a dissemination barrier [7], a tournament
barrier, a C++ port of Habanero’s phasers, and our own
insertion tree phaser implementation. Furthermore, we make
comparisons to a spinning barrier, which is part of the Tilera
libraries.

Since modern systems provide many optimizations which
can affect benchmark results in unexpected ways, we follow
the suggestions of Georges et al. [11]. Furthermore, to avoid
the influence of thread migration and scheduling overhead,
all threads are pinned to a separate physical core.

The benchmarks are executed and statistically analyzed by
ReBench, a benchmark execution tool.5 Every benchmark is

4http://www.tilera.com/
5http://rebench.googlecode.com/

80

90

100

110

120

130

140

150

160

0 8 16 24 32 40 48 56

µs

num. cores
TreeBarrier HabaneroPhaser Central Dissemination InsertionTreePhaser TmcSpinBarrier

Figure 4. Two-Phase Barrier Microbenchmark

executed at least 100 times, and up to 200 times to reach a
confidence interval of 0.95. We always report the median of
the measured samples.

B. Barrier Microbenchmark

For our first experiment, we use a slightly adapted EPCC
microbenchmark to compare the pure barrier performance
of our approach to other barrier implementations [12].

for 1 to 10000:
delay(500)

next

Listing 5. EPCC Benchmark

for 1 to 10000:
delay(500)
signal
delay(250)
next

Listing 6. For Two-Phase Barriers

Lst. 5 shows the standard version, meant to measure the
synchronization overhead of a classic barrier. Lst. 6 presents
an adapted version, which is meant for two-phase barriers.

Fig. 4 shows that the TreeBarrier, InsertionTreePhaser, and
the dissemination barrier have good scalability character-
istics. The average size of the confidence intervals within
0.15%, therefore it is not significant and thus not indicated.

To assess the influence of proper two-phase barrier sup-
port, we set the results of the EPCC microbenchmarks
using one-phase synchronization in relation with a version
using two-phase synchronization. A barrier which does not
support two-phase synchronization should exhibit the same
performance characteristics in both benchmarks. In a two-
phase barrier, part of the overhead of the checkpointing
should be hidden in the execution imbalances of the different
cores. Thus, the observable barrier overhead should become
smaller. Fig. 5 shows the corresponding graph. The graph
is obtained by dividing the barrier overhead measured in
the two-phase microbenchmark by the overhead measured
in the classic barrier microbenchmark. The TmcSpinBarrier
and the central barrier behave as is expected,. They show the
same overhead in both measurements. The original phaser
exhibits a minimally smaller overhead for the two-phase
barrier benchmark, but since most of the synchronization
work is done at the decision-point, it does not hide the barrier

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 8 16 24 32 40 48 56

part of the observable barrier overhead

num. cores
TreeBarrier HabaneroPhaser Central Dissemination TreePhaser TmcSpinBarrier

Figure 5. Two-Phase Barrier Overhead vs. Classic Barrier Overhead

overhead as well as our TreeBarrier and InsertionTreePhaser
implementations. For the TreeBarrier, only 31% of its over-
head is observable, and for the TreePhaser, the observable
overhead is 34%.

The microbenchmarks show that our approach scales as is
expected of a tree barrier. Furthermore, it is able to benefit
fully from its support for two-phase barrier synchronization
by hiding a major portion of the barrier overhead.

C. Application Benchmarks

To get a better impression of the influence on application
performance, we chose the Modified SPLASH-2 bench-
marks6 for our evaluation. We use the recommended core
benchmarks and, also included the LU benchmark, since it
uses only barriers as a synchronization mechanism [13].

The goals of these benchmarks is to measure the clas-
sic barrier performance of our approach and to verify its
usability as a drop-in replacement for existing algorithms.
Thus, the applications are not adapted, but use classic barrier
operations only.

Depending on their characteristics and requirements with
respect to the allowed number of threads, we run them with
4, 8, 16, 32, and 58 threads. To investigate the scalability
and the influence of different barrier algorithms, we report
the results for the largest number of threads. Fig. 6 shows

6http://www.capsl.udel.edu/splash/

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

Barnes
58 cores

Cholesky
58 cores

LU
58 cores

Radiosity
58 cores

Water-Spacial
58 cores

FFT
32 cores

Ocean
32 cores

Radix
32 cores

speedup compared to TmcSpinBarrier

TreeBarrier HabaneroPhaser Central Dissemination InsertionTreePhaser

Figure 6. SPLASH-2 on Tilera

Table I
DYNAMIC BARRIER MICROBENCHMARK USING UP TO 59 THREADS

Implementation mean in ms std. deviation in ms
Central(Dynamic) 338.6 2.9
HabaneroPhaser 339.4 2.1
InsertionTreePhaser 339.1 2.4

the relative speedup to the TmcSpinBarrier. We chose it
as the base for comparison since it is the standard barrier
implementation provided with the system. Furthermore, the
chart indicates two times the standard deviation, which
includes at least 75% of the measured samples. For the
interpretation of the chart, it can be noted that the results
for FFT and the radix sort benchmark are not significant, but
are governed by caching and timing effects in the parallel
system.

Our conclusion is that our insertion tree phaser can be
used directly as a drop-in replacement for a standard barrier
without harming performance. Thus, there is no measurable
overhead in supporting the additional phaser capabilities. On
the contrary, it provides additional optimization potential by
exploiting the two-phase and point-to-point synchronization
support, which is not done.

D. Dynamic Barrier Microbenchmark

One important point Shiroko and Sarkar evaluated for
their hierarchical phasers was the overhead of adding and
dropping activities. Due to additional synchronization, it is
more costly than a normal phaser [8].

They used a benchmark based on the EPCC microbench-
marks to measure the barrier overhead in the case of dy-
namic task creation. We reran their benchmark to investigate
whether our approach introduces significant overheads by
dynamic task creation. The results can be found in Table I.
No significant differences can be found between the three
implementations since the main portion of the dynamic over-
head comes from thread creation. Thus, it is safe to conclude
that our strategy is at least as good as the hierarchical
phasers, which need more synchronization than the normal
phasers used in our comparison.

VI. DISCUSSION

This section compares our approach briefly with hierar-
chical phasers.

With respect to the performance characteristics, the cur-
rent phaser and hierarchical phaser proposals have difficul-
ties with hiding latency in proper two-phase barrier support.
As we have shown in Fig. 5, it is possible to hide a large
portion of the barrier overhead. The original phasers, which
to our knowledge, use the same strategy as hierarchical
phasers, hide less than 23% of their overhead while our
approach is able to hide up to 66% and thus, can benefit
better from two-phaser barrier support.

Another issue with hierarchical phasers is the upfront
definition of their tree shape. By defining tiers and the
degree of the tree, the overall number of participants for
which scalability is given is statically limited. This limits
the application in situations where the number of concurrent
activities can not be determined upfront, which is a common
case for fine-grained fork/join parallelism. Furthermore, it
is not clear how graceful their proposal scales from a
small number of participants up to very large numbers of
participants since the strategy for the tree construction is
left open.

For very fine-grained parallelism it becomes important
that add and drop operations on a phaser can be executed
concurrently. From our understanding of the original phaser
implementation, add and drop operations are completely
concurrent. The only need for sequentialization is during
an add when the synchronization object is added to the
list in the phaser. However, the drop operation leaves the
synchronization object in the phaser’s list. This will lead to
scalability problems if drop operations occur frequently. For
hierarchical phasers, the authors indicate additional overhead
for add operations. However, they do not detail their strategy
and thus, it is not clear whether add operations could run
in parallel. Drops are probably performed as in the original
phasers, and the garbage collection, i. e., scalability problem,
remains. For insertion tree phasers, the situation is different
in that the modification of the tree structure needs to be
sequentialized. Thus, the portion of add and drop operations,
which changes any pointers in the tree, is protected by
a lock. Hence, add and drop operations are only partially
concurrent in an insertion tree phaser. It is possible not
to use a free list for dropped participants and to allow
concurrent drop operations similar to the original phasers,
but this would lead to additional growth of the tree which
we decided to avoid.

VII. CONCLUSION AND FUTURE WORK

We presented in this paper the first completely docu-
mented strategy to implement a scalable phaser synchro-
nization construct. Our approach uses the classic strate-
gies of tree-based barriers to achieve their good scalability
properties. A novel insertion tree structure enables dynamic
parallelism by allowing activities to join and leave the barrier
as needed to facilitate fine-grained fork/join parallelism.
This paper provides the necessary details to implement an
insertion tree phaser straightforwardly. It discusses the data
structures, the properties of the synchronization tree, and the
potential race conditions that must be considered.

Furthermore, the presented approach overcomes a num-
ber of limitations of the hierarchical phaser approach. For
example, it does not require a preset tree size, which limits
scalability, and it has sufficient two-phase barrier character-
istics to hide the barrier overhead in inevitable load imbal-
ances between participating activities. Our evaluation also

demonstrates the usability for legacy applications as a drop-
in replacement without negatively impacting performance,
despite the added complexity to provide the extend phaser
capabilities.

Future work is the scalability evaluation for more than 64
cores. Depending on the systems, n-ary trees [8] and node-
local spinning [7] could improve performance properties.

REFERENCES

[1] J. Torrellas, “Architectures for extreme-scale computing,”
IEEE Computer, vol. 42, no. 11, pp. 28–35, November 2009.

[2] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-
oriented approach to non-uniform cluster computing,” in
Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications. New York, NY, USA: ACM, 2005.

[3] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer,
“Phasers: A unified deadlock-free construct for collective and
point-to-point synchronization,” in ICS 08: Proceedings of
the 22nd annual international conference on Supercomputing.
New York, NY, USA: ACM, 2008, pp. 277–288.

[4] R. Gupta and M. Epstein, “High speed synchronization of
processors using fuzzy barriers,” International Journal of
Parallel Programming, vol. 19, no. 1, February 1990.

[5] I. Jung, J. Hyun, J. Lee, and J. Ma, “Two-phase barrier:
A synchronization primitive for improving the processor
utilization,” International Journal of Parallel Programming,
vol. 29, no. 6, pp. 607–627, December 2001.

[6] R. Gupta and C. R. Hill, “A scalable implementation of
barrier synchronization using an adaptive combining tree,”
International Journal of Parallel Programming, vol. 18, no. 3,
pp. 161–180, June 1989.

[7] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors,”
ACM Trans. Comput. Syst., vol. 9, no. 1, pp. 21–65, 1991.

[8] J. Shirako and V. Sarkar, “Hierarchical phasers for scalable
synchronization and reductions in dynamic parallelism,” in
24th IEEE International Parallel and Distributed Processing
Symposium, 2010.

[9] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms
for barrier synchronization,” International Journal of Parallel
Programming, vol. 17, no. 1, pp. 1–17, February 1988.

[10] M. Scott and J. Mellor-Crummey, “Fast, contention-free
combining tree barriers for shared-memory multiprocessors,”
International Journal of Parallel Programming, vol. 22, no. 4,
pp. 449–481, August 1994.

[11] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rig-
orous java performance evaluation,” SIGPLAN Not., vol. 42,
no. 10, pp. 57–76, 2007.

[12] J. M. Bull, “Measuring synchronisation and scheduling over-
heads in openmp,” in In Proceedings of First European
Workshop on OpenMP, 1999, pp. 99–105.

[13] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The splash-2 programs: Characterization and methodological
considerations,” in ISCA ’95: Proceedings of the 22nd annual
international symposium on Computer architecture. New
York, NY, USA: ACM, 1995, pp. 24–36.

